集成电路电驱动纳米激光技术的突破

时间:2020-11-03 14:50来源:莫斯科物理科学与技术学作者:xuji 点击:
------分隔线----------------------------

摘要:电泵表面等离激元极化纳米激光。 信用:德米特里费达宁 莫斯科物理技术学院和伦敦国王学院的研究人员清除了阻碍创建用于集成电路的电驱动纳米激光的障碍。 这种方法在 Nanophotonics 的最新

关键字:集成电路,电,驱动,纳米,激光技术,的,突破,

 

电泵表面等离激元极化纳米激光。信用:德米特里·费达宁
 
莫斯科物理技术学院和伦敦国王学院的研究人员清除了阻碍创建用于集成电路的电驱动纳米激光的障碍。这种方法在Nanophotonics的最新论文中进行了报道,它使相干光源设计的规模不仅比人发的厚度小数百倍,而且甚至比激光器发出的光的波长小。这为有望在不久的将来出现的许多核心微处理器中的超快速光学数据传输奠定了基础。
 
光信号在1980年代彻底改变了信息技术,当时光纤开始取代铜线,使数据传输速度提高了几个数量级。由于光通信依赖于光(频率为几百太赫兹的电磁波),因此它允许每秒通过一根光纤传输TB级的数据,大大优于电互连。
 
光纤是现代互联网的基础,但是光可以为我们做更多的事情。它甚至可以在超级计算机,工作站,智能手机和其他设备的微处理器内部实施。这要求使用光通信线来互连诸如处理器核之类的纯电子组件。结果,大量信息几乎可以立即在整个芯片上传输。
 
摆脱数据传输的限制,可以通过堆叠更多的处理器内核来直接提高微处理器性能,以至于创建一个1,000核处理器,其速度实际上是其10核处理器的100倍。半导体行业巨头IBM,HP,Intel,Oracle等。反过来,这将使在单个芯片上设计真正的超级计算机成为可能。
 
挑战是在纳米级连接光学和电子设备。为了实现这一点,光学组件不能大于数百纳米,这是比人类头发的宽度小约100倍。此大小限制也适用于片上激光器,这对于将信息从电信号转换为承载数据位的光脉冲是必不可少的。
 
然而,光是一种具有数百纳米波长的电磁辐射。量子不确定性原理说,光粒子或光子可以在其中存在一定的最小体积。它不能小于波长的立方。简而言之,如果使激光太小,光子将无法容纳其中。也就是说,围绕光学器件尺寸的这种限制存在多种方法,这就是衍射极限。解决方案是用表面等离激元极化子或SPP代替光子。
 
SPP是电子的集体振动,其局限于金属表面并与周围的电磁场相互作用。只有少数几种称为等离子金属的金属适合与SPP配合使用:金,银,铜和铝。就像光子一样,SPP是电磁波,但是在相同的频率下,它们的定位要好得多-也就是说,它们占用的空间较小。使用SPP代替光子可以“压缩”光,从而克服衍射极限。
 
当前技术已经可以实现真正的纳米级等离子激元激光器的设计。然而,这些纳米激光是被光泵浦的,也就是说,它们必须用外部的大功率和高功率激光器来照明。对于科学实验,这可能很方便,但不在实验室之外。打算用于大规模生产和实际应用的电子芯片必须结合数百个纳米激光器,并在普通的印刷电路板上运行。实际的激光器需要电泵浦,或者换句话说,由普通电池或直流电源供电。到目前为止,由于通常无法维持液氮冷却,因此此类激光器仅可用作在低温下运行的设备,不适用于大多数实际应用。
 
莫斯科物理与技术研究所(MIPT)和伦敦国王学院的物理学家提出了一种替代传统方式的电泵工作的方法。通常,纳米级激光器的电泵方案需要由钛,铬或类似金属制成的欧姆接触。此外,该接触必须是谐振器的一部分-产生激光辐射的体积。这样做的问题是钛和铬强烈吸收光,这损害了谐振器的性能。这样的激光器具有高的泵浦电流并且容易过热。这就是为什么需要低温冷却以及随之而来的所有不便之处。
 
提出的用于电泵的新方案基于具有隧道肖特基接触的双异质结构。它使欧姆接触及其强吸收金属变得多余。现在,泵浦发生在等离子金属与半导体之间的界面上,SPP沿该界面传播。“我们新颖的泵浦方法使将电动激光器带到纳米级成为可能,同时保留了其在室温下运行的能力。同时,与其他电泵纳米激光器不同,辐射被有效地导向光子或等离子体波导,使纳米激光器适合集成电路。”来自MIPT光子学和2D材料中心的Dmitry Fedyanin博士评论道。
 
研究人员提出的等离子纳米激光在其三个维度上都比其发出的光的波长小。此外,纳米激光中SPP所占据的体积比立方光的波长小30倍。据研究人员称,他们的室温等离子体纳米激光可以很容易地做得更小,使其特性更加令人印象深刻,但这是以无法有效地将辐射提取到总线波导中为代价的。因此,尽管进一步的小型化将使得该装置不能很好地应用于片上集成电路,但是对于化学和生物传感器以及近场光学光谱学或光遗传学来说仍然是方便的。
 
尽管具有纳米级尺寸,但纳米激光的预测输出功率总计超过100微瓦,可与更大的光子激光器相媲美。如此高的输出功率允许每个纳米激光每秒传输数百吉比特,从而消除了高性能微芯片的最大障碍之一。其中包括各种高端计算设备:超级计算机处理器,图形处理器,甚至将来还会发明的一些小工具。
 
参考:Dmitry Yu的“纳米级激光:电驱动纳米激光对表面等离子体的相干发射”。Fedyanin,Alexey V.Krasavin,Aleksey V.Arsenin和Anatoly V.Zayats,2020年7月20日,纳米光子学。
【光粒网综合报道】( 责任编辑:xuji )
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------

凡光粒网注明"来源:光粒网"或"来源:www.diodelaser.com.cn"的作品,包括但不限于本网刊载的所有与光粒网栏目内容相关的文字、图片、图表、视频等网上内容,版权属于光粒网和/或相关权利人所有,任何媒体、网站或个人未经光粒网书面授权不得转载、摘编或利用其它方式使用上述作品;已经书面授权的,应在授权范围内使用,并注明"来源:光粒网"。违反上述声明者,本网将追究其相关法律责任。

【免责申明】本文仅代表作者个人观点,与光粒网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

在线投稿有投稿需求的公司企业请直接在线申请,其他项目合作联系 QQ:2644977628 → 在线申请投稿 >
Copyright  ©  2010-2018 diodelaser.com.cn Inc. All rights reserved.光粒网 版权所有
鄂ICP备11013139号-2

鄂公网安备 42018502002510号