Novel chip-based platform could simplify measurements of single molecules

时间:2015-03-30 15:52来源:opli作者:yeyan 点击:
------分隔线----------------------------

摘要: 最近,加州大学(UC)圣克鲁斯分校的研究人员,开发出一种新的方法,通过在一种以集成芯片为基础的平台上结合电气和光学测量,来研究单分子和纳米粒子。相关研究结果发表在最近的《Nano Letters》(2014年最新影响因子12.94),研究人员报道称,使用这种新设备可以100%的保真度,将病毒与同样大小的纳米粒子区别开来。

关键字:测量,单分子,芯片

Novel chip-based platform could simplify measurements of single molecules

A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform


The nanopore-gated optofluidic chip 

The nanopore-gated optofluidic chip is able to distinguish influenza viruses from nanobeads.
 

August 13, 2014

By Melissae Fellet 

Researchers at UC Santa Cruz have developed a new approach for studying single molecules and nanoparticles by combining electrical and optical measurements on an integrated chip-based platform. In a 
paper published July 9 in Nano Letters, the researchers reported using the device to distinguish viruses from similarly-sized nanoparticles with 100 percent fidelity.

Combining electrical and optical measurements on a single chip provides more information than either technique alone, said corresponding author Holger Schmidt, the Kapany Professor of Optoelectronics in the Baskin School of Engineering and director of the W. M. Keck Center for Nanoscale Optofluidics at UC Santa Cruz. Graduate student Shuo Liu is first author of the paper.

The new chip builds on previous work by Schmidt's lab and his collaborators at Brigham Young University to develop optofluidic chip technology for optical analysis of single molecules as they pass through a tiny fluid-filled channel on the chip. The new device incorporates a nanopore that serves two functions: it acts as a "smart gate" to control the delivery of individual molecules or nanoparticles into the channel for optical analysis; and it allows electrical measurements as a particle passes through the nanopore.

"The nanopore delivers a single molecule into the fluidic channel, where it is then available for optical measurements. This is a useful research tool for doing single-molecule studies," Schmidt said.

Biological nanopores, a technology developed by coauthor David Deamer and others at UC Santa Cruz, can be used to analyze a DNA strand as it passes through a tiny pore embedded in a membrane. Researchers apply voltage across the membrane, which pulls the negatively charged DNA through the pore. Current fluctuations as the DNA moves through the pore provide electrical signals that can be decoded to determine the genetic sequence of the strand.

With the new device, researchers are able to gather electrical measurements on a nanoparticle as it moves through a pore in a solid membrane, and then measure the optical signals when the particle encounters a beam of light in the channel. By correlating the strength of the current decrease as a particle moves through the pore, the intensity of the optical signal, and the time of each measurement, the researchers are able to discriminate among particles with different sizes and optical properties and to determine the flow speed of particles through the channel.

The chip can also be used to differentiate particles of similar size but different composition. In one experiment, the researchers combined influenza viruses with nanobeads of a similar diameter and placed the mixture above the nanopore. The virus was labeled with a red fluorescent tag and the beads were labeled with a blue tag. The researchers correlated the electrical signal with the fluorescent wavelength and the time of each measurement. They found that the blue nanobeads traveled faster through the channel than red influenza virus, perhaps because of a difference in surface charge or mass. Besides identifying pathogens in a mixture, the researchers can also count the number of virus particles.

"This could be used as an analytical device to do reliable counts of virus particles in a sample," Schmidt said.

Currently, Schmidt's group is working on methods to add optical trapping to the device. This would allow a molecule in the channel to be held in one place, investigated, and released, with the potential to analyze hundreds of molecules in an hour. "Having this all on one chip would make single-molecule measurements much easier and more convenient," Schmidt said.

In addition to Liu and Schmidt, the coauthors include UCSC graduate student Joshua Parks, and Yue Zhao and Aaron Hawkins at Brigham Young University. This work was supported by the Keck Center for Nanoscale Optofluidics and grants from the National Science Foundation and National Institutes of Health.

【光粒网综合报道】( 责任编辑:yeyan )
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------

凡光粒网注明"来源:光粒网"或"来源:www.oeworld.cn"的作品,包括但不限于本网刊载的所有与光粒网栏目内容相关的文字、图片、图表、视频等网上内容,版权属于光粒网和/或相关权利人所有,任何媒体、网站或个人未经光粒网书面授权不得转载、摘编或利用其它方式使用上述作品;已经书面授权的,应在授权范围内使用,并注明"来源:光粒网"。违反上述声明者,本网将追究其相关法律责任。

【免责申明】本文仅代表作者个人观点,与光粒网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

在线投稿有投稿需求的公司企业请直接在线申请,其他项目合作联系 QQ:1965483967 QQ:2644977628 → 在线申请投稿 >
Copyright  ©  2010-2018 oeworld.cn Inc. All rights reserved.光粒网 版权所有
鄂ICP备11013139号-2