Scientists Rig Hospital-grade Lightweight Blood Flow Imager on the Cheap

时间:2015-03-31 11:12来源:opli作者:yeyan 点击:
------分隔线----------------------------

摘要:跟踪实验室中的血流量是研究疾病如偏头痛或中风和新的方法来解决他们的设计的一个重要工具。血流量也经常在临床上测量,与激光散斑对比成像(LSCI)是测量这些变化的一个途径;然而,这种技术需要专业级的影像设备,这限制了它的使用。

关键字:成像系统,血流成像,医疗等级

  Scientists Rig Hospital-grade Lightweight Blood Flow Imager on the Cheap

 

  New biological imaging system fifty times less expensive than standard equipment, suitable for imaging applications outside of the lab

 

A laser pointer illuminates a microfluidic flow phantom and the speckle pattern is imaged onto a webcam
 

  A laser pointer (top right) illuminates a microfluidic flow phantom (bottom center) and the speckle pattern is imaged onto a webcam (top center) to enable calculation of flow images. Credit: Andrew Dunn, University of Texas – Austin

 

  WASHINGTON, Sept. 26, 2013—Tracking blood flow in the laboratory is an important tool for studying ailments like migraines or strokes and designing new ways to address them. Blood flow is also routinely measured in the clinic, and laser speckle contrast imaging (LSCI) is one way of measuring these changes; however, this technique requires professional-grade imaging equipment, which limits its use. Now, using $90 worth of off-the-shelf commercial parts including a webcam and a laser pointer, researchers at the University of Texas at Austin (UT-Austin) have duplicated the performance of expensive, scientific-grade LSCI instruments at a fraction of the cost. The work is the first to show that it is possible to make a reliable blood flow imaging system solely with inexpensive parts, the authors say. The researchers describe their development in the latest issue of the Optical Society’s (OSA) journal Biomedical Optics Express.

 

  “We demonstrate that the high cost of standard systems is unnecessary, because a system that costs $90 can give equivalent results for both in vitro and in vivo imaging applications,” said biomedical engineer Andrew Dunn, an associate professor and Dornberger Centennial Fellow in Engineering at UT-Austin and an author of the study.

 

  Measuring blood flow changes using LSCI requires just a few parts – laser light to illuminate the tissue, a camera to record the image, and focusing optics to direct the scattered light to the camera – but at least one of them usually comes with a lofty price tag. The laser light reflects or scatters off the tissue and interferes with itself to create the speckle pattern collected by the camera. This speckle pattern provides a way to visualize the flow of blood within the tissue: areas with a high flow rate show up in the resulting image as blurrier speckles, which can be measured by their lower contrast. Together, all the parts can add up to as much as $5,000.

 

  Unlike past attempts to create a cheaper speckle imager, the UT-Austin team’s new method uses only inexpensive pieces of equipment. A $5 laser pointer is used to illuminate the patch of tissue to be imaged. Light is reflected off the tissue and focused by a pair of generic 40-mm camera lenses onto the sensor of a $35 webcam. The team used their setup to image changes in blood flow in a mouse model and found that they were able to identify areas of high flow versus low flow.

 

  At just 5.6 centimeters in length and weighing only 25 grams, the system is compact and lightweight, which would make it easier to transport for imaging applications outside of the lab, including clinics in areas with limited access to medical care, Dunn said.

 

  Currently, the new system’s field of view, which is just a few square millimeters across, and resolution are limited by the size of the webcam sensor, but future versions could have a more flexible layout.

 

  “The lens configuration could be easily adjusted to visualize even smaller structures by magnifying or to visualize larger structures by increasing the field of view, depending on what kind of flow the user is interested in visualizing,” Dunn said.

 

  Paper: "Low-cost laser speckle contrast imaging of blood flow using a webcam," L. Richards et al., Biomedical Optics Express, Vol. 4, Issue 10, pp. 2269-2283 (2013).

 

  About Biomedical Optics Express

 

  Biomedical Optics Express is OSA’s principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by the Optical Society and edited by Joseph A. Izatt of Duke University. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at www.OpticsInfoBase.org/BOE.

 

  About OSA

 

  Founded in 1916, The Optical Society (OSA) is the leading professional society for scientists, engineers, students and business leaders who fuel discoveries, shape real-world applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership programs, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of professionals in optics and photonics. For more information, visit www.osa.org.

【光粒网综合报道】( 责任编辑:yeyan )
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------

凡光粒网注明"来源:光粒网"或"来源:www.oeworld.cn"的作品,包括但不限于本网刊载的所有与光粒网栏目内容相关的文字、图片、图表、视频等网上内容,版权属于光粒网和/或相关权利人所有,任何媒体、网站或个人未经光粒网书面授权不得转载、摘编或利用其它方式使用上述作品;已经书面授权的,应在授权范围内使用,并注明"来源:光粒网"。违反上述声明者,本网将追究其相关法律责任。

【免责申明】本文仅代表作者个人观点,与光粒网无关。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。

在线投稿有投稿需求的公司企业请直接在线申请,其他项目合作联系 QQ:1965483967 QQ:2644977628 → 在线申请投稿 >
Copyright  ©  2010-2018 oeworld.cn Inc. All rights reserved.光粒网 版权所有
鄂ICP备11013139号-2